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Abstract 

Earthquakes are natural disasters that are difficult to predict and have caused a lot of major economic losses 

as well as devastating life losses. The current early detection of earthquakes does the job of informing the 

citizens of an incoming earthquake, but it only gives them limited time to respond and evacuate the affected 

area. Our proposed solution combines satellites and specialized drone sensors to collect real-time seismic 

data, coordinated with machine learning algorithms for earthquake prediction. Agencies such as the United 

States Geological Survey (USGS) and the United States Agency for International Development (USAID), 

as well as the National Aeronautics and Space Administration (NASA), will be essential for improving and 

implementing our proposed solution.  

 

We studied and used prior work on earthquake phase/distance prediction to preprocess raw waveform data, 

and then predict earthquake magnitudes in addition to phase. The ML model analysis component had 85-

90% success differentiating phase wave types and 0.002 loss when predicting magnitudes, resulting in 

predictions being within 0.4 magnitudes of true intensity on average. The generation component was able 

to create commonly looking waveforms after 150 training iterations. 

 

The CONOPS for our prediction system will involve data being streamed in from satellite TEC perturbation 

measurements, drone geophones, and seismographs, all being used to forecast possible earthquakes. We 

estimate the total cost of the five years of development for the system is 98 million dollars. We anticipate 

the gain to be much larger due to reducing infrastructure damage, deaths, injuries, and expenditures from 

disaster response and recovery, and increasing productivity and economic participation. Through AI and 

ML, as well as advanced aviation technology, our research hopes to improve earthquake early detection 

and reduce the economic and life losses caused by earthquakes. We improve greatly on our previous 

research, completely revamping our machine learning strategy and expanding on previously ignored areas 

of our system, including integration and budget.  

 

 

 

 

 

 

  



1 Introduction 

1.1 Overview of Earthquakes 

Earthquakes are natural phenomena that are caused by the movement of tectonic plates within the 

Earth’s crust. The root of this complicated geologic phenomenon is the separation of the lithosphere of the 

Earth into separate plates, where tension builds up at their borders because of interactions and releases as 

seismic waves [1]. Seismologists use advanced seismographic instruments to detect, analyze, and monitor 

these seismic waves, building a comprehensive understanding of earthquake dynamics on a global scale. 

An earthquake is one of the most devastating natural disasters. There are a lot of communities that 

have suffered fatalities because of earthquakes. Roughly 2.32 million individuals were impacted by 

earthquakes, and almost 59% of earthquake-related fatalities resulted from a building collapsing [2]. In 

2023, around 64 thousand lives were lost due to earthquakes and its aftershocks [64].  

It is very challenging for seismologists to predict where and when the next earthquake could happen, 

even with the current technology. Furthermore, earthquakes can cause secondary effects due to the 

movement of land, which adds to the toll of this natural disaster. Earthquakes could result in tsunamis and 

landslides, which contribute to their injury and death rates along with a serious economic impact on the 

affected location. 

1.2 Existing Earthquake Detection Methods and their Weakness 

ShakeAlert is one of various earthquake early detection systems and is managed by USGS. 

ShakeAlert works by monitoring seismic waves within the area through seismographs to detect incoming 

earthquakes [3, 4]. When a large enough earthquake occurs that could cause shaking in a particular area, 

the system quickly sends out an alarm by estimating the location, the time till arrival to a given end user, 

and the strength. The alert is then effectively broadcast through a wide range of communication channels, 

such as smartphone apps, emergency alert systems, and other platforms, enabling people, organizations, 

and important infrastructure industries to take immediate protective and safety measures [3].  

One issue with this system is that it might be too late when the alerts are sent. Since it solely relies 

on constant monitoring, the process of ingesting seismic data, realizing the activity is large enough to 

disrupt an area, and broadcasting alerts is racing against the seismic waves themselves, especially fast P-

waves that can reach an area at the same time of an alert if the shaking is close enough. This does not allow 

some businesses and individuals to pack valuable, necessary tools and get out of the affected area.  

1.3 A Modified ShakeAlert System 

The goal of this project is to improve the current early detection system by implementing machine 

learning (ML) and seismic detection through aerial means. While the current earthquake early detection 

system, ShakeAlert, notifies individuals of impending earthquakes, it does not give them enough time to 

prepare and evacuate from it. By implementing artificial intelligence, we hope to shift focus from quick 

detection to advanced prediction of earthquakes, allotting more time for preparation with warnings. By 

using drones, we aim to advance how versatile seismic detection can be by using drone-mounted geophones 

that can be repositioned on a whim. By using satellites, we aim to show how environmental surveillance 

can be used to help predict earthquakes and how satellite communication can allow flexibility of 

communication to all stations for processing. We do not intend for this system to replace basic detection, 

but to enhance it with higher levels of nuance reachable through contemporary strategies. 

2 Earthquake Prediction through Machine Learning & Aerial Strategies 

Fig. 1 illustrates the components utilized within our suggested approach. This approach makes use 

of satellites and planes equipped with specialized sensors, among other aviation technologies. These sensors 

are responsible for collecting data, which our machine learning model is then trained with. The data is sent 



to a receiving station for storage after it has been gathered. The data is then analyzed, and an ML model is 

used to train the datasets so that predictions about the frequency and timing of earthquakes may be made. 

 

 

Fig. 1. A high-level overview of the modified ShakeAlert system. The diagram illustrates the seismic data 

flow from detection to delivery, where Machine Learning models are used to enable earthquake prediction 

and data synthesis.  

2.1 Satellite transmission 

Implementing satellites for further or remote data transmission offers many advantages, including 

a more established communication system and reliable data transfer that links across vast distances. In 

Figure 1, communication satellites transfer earthquake monitoring data to a receiving ShakeAlert station. 

Using satellites can provide global coverage for data transmission, which is crucial for flexible reach to 

every sensor and station. 

2.2 Sensor Data and its Sources 

Our solution seeks to expand the ways we can obtain seismic waveforms from traditional ground 

seismographs. One inherent drawback to these seismographs is the nature of their infrastructure. The best 

locations where seismographs and stations can operate are right next to faults as they can listen to where 

seismic activity is most likely to happen but if those locations are impossible to operate in, then that hampers 

their effectiveness. For example, many of California’s faults are well within mountainous terrain and would 

be difficult to establish full seismograph stations at. [16, 17] 

This is why sensor technology from the sky can help fix this issue. Mobile drones can enable 

geophones - the edge computing version of full-sized seismographs - to be deployed next to these faults, 

and for locations for these smaller devices to be adjusted on the fly if new developments are found [31].  

Airplanes and satellites can then serve multiple purposes. Dynamic analysis requires a dynamic 

communication system, and both geophones and seismographs can be configured to communicate to 

aerospace hubs that can then forward their data back down to various stations. This will allow each station 

to have 1) seismic activity according to its own spatial context and 2) activity according to the context of 

the entire west coast or country. The second purposes is leveraging new methods being created in the 

recognition of seismic activity, such analyzing perturbations in the total electron content of the atmosphere 

due to seismic activity. In addition, Synthetic aperture radars satellites are satellites equipped with special 

sensors that can detect seismic activity [9]. These satellites can provide continuous ground monitoring and 



seismic activity patterns that can be used to predict earthquakes. By leveraging drones, airplanes, and 

satellites, we are allotted more freedom in monitoring the earth for earthquakes. [9] 

2.3 Machine Learning 

For our proposed solution, data is gathered by ground seismographs, satellites, and drones which 

we then feed to the ML models at the seismograph station. 

Machine learning is the study of the computer’s abilities to learn like a human being. There are a 

variety of strategies that have been developed to allow an algorithm to learn anything, but one of the most 

versatile methods is a neural network. Created to mimic the structure of a human brain, a neural network 

model is made up of multiple layers of nodes called neurons. Each neuron as a weight and an activation 

function connected to it, meaning a network of neurons can tailor itself to any outcome at a node level [40]. 

This means that if you can convert an abstract object to a series of numbers, and convert a given outcome 

to a set of numbers, you can theoretically create a model for anything, including 3D waveform data. 

2.3.1 Phase & Magnitude Predictions 

 
Fig. 2. A diagram of the process for seismic data analysis. 

The objective of the ML analysis is to provide prediction models that can predict earthquakes before 

they happen. The process is illustrated in Figure 2. In summary, receiving stations will gather seismic data 

(including waves, previous earthquakes, and their magnitude levels). This seismic data will then be 

analyzed alongside the usual detection capabilities of the original system. Should the ML detect possible 

future activity, it will notify personnel to investigate, among other processes. 

The method was tested on a dataset from the US Geological Survey’s website [10]. William Yeck 

et al. obtained the data through the web services of the IRIS Data Management Center and then posted data 

in numerous compressed files, the largest being the P-Wave training waveforms, totaling at least 40GB 

worth of storage. Each earthquake waveform trace consists of three channels of one-minute samples 

conducted at 40Hz, resulting in 2400 measurements per channel and 7200 measurements per earthquake 

waveform. Each channel represents a degree of displacement (Vertical displacement, North-South 

displacement, and East-West displacement) to fully account for a 3D representation of an earthquake 

vibration [10]. 

Next features are computed: the earthquake’s unique identifier, earthquake magnitude, the phase 

of the waveform, and the waveform measurements from the earthquake. This data will go through a 

preprocessing phase where we leverage Yeck’s custom Butterworth filter and demeaning strategy to first 

prepare the waveforms, then package the data as training and testing dictionaries. After preprocessing the 

data, we then trained and tested four models. The first model was the phase classifier that will use 

probability to determine if a given waveform sample is a P-wave or S-wave. The next three models - one 

for specifically P-waves, one for S-waves, and one for all data - are magnitude models that predict the exact 



magnitude given a sample. There are three models as we wish to test the magnitude prediction ability after 

the data is classified by the phase model. 

2.3.2 Synthetic Waveform Generation 

 

Fig. 3. A diagram of the process for synthetic seismic data generation. 

 

To generate data off of the wave forms, we take advantage of the Generative Adversarial Network 

(GAN) method to create two different generators, illustrated in Fig. 3. This sort of network uses two 

autoencoders - a discriminator deciding whether an input value is real or fake, and a generator set on tricking 

the discriminator into predicting correctly. This setup forces the generator autoencoder to get better and 

better and fake real data until it becomes near indistinguishable [12]. We have two unique GANs set up to 

handle both raw and preprocessed seismic waveforms. Results from both can be sent into the ML analysis 

portion as if the data were collected through natural means. 

3 Implementation Analysis 

3.1 Python Program Setup 

To implement all programs into a proof of concept, we developed a multi-file program in PyCharm. 

We utilize Python 3.11 as it is one of the latest stable builds of Python that can comfortably support deep 

learning libraries. The NumPy and Pandas libraries are used for data ingestion, manipulation, and saving 

both input and output data. The SciPy and Scikit-learn libraries are used for preprocessing and model 

analysis. The Seaborn, Matplotlib, and Imageio libraries are used for data visualizations. 

The four files were organized into a main Python program, a preprocessing Python program, an 

analysis Python program, and a generation Python program. The main file will be the link between the other 

three programs so that the program can be run through one command or button press. It will first call the 

preprocessing file and ingest, then preprocess the waveforms that will be used throughout the program, 

along with associated phases and magnitudes (azimuths and distances aren’t used but are also gotten too). 

This data will be first fed into the analysis program, which will use the phase data and magnitude data to 

train/test the phase model and magnitude models, respectively. This data is next fed into the generation 

program, which will first ingest its own data to generate raw waveforms, then use preprocessed data to 

generate preprocessed waveforms. The analysis and generation happen independent of each other. 



3.2 Machine Learning TRL Evaluation 

As a proof-of-concept, we set parameters in the main function to test the code. We utilize 2000 

randomly selected waveforms for the analysis and preprocessed generation, with 1500 of them being P-

waves and 500 of them being S-waves. We set the program to only use a 50-second window from each 60-

second waveform. Lastly, we set the raw generation to use 5000 waveforms in total, and output 5000 

synthetic waveforms.  

The program took a total of 41 minutes and 35 seconds to run. Preparing the waveforms for analysis 

took just 34 seconds. The analysis section, which included the training of all four models, then the testing 

of all four models, took 6 minutes to conduct. The generation section, which includes the raw generation 

and the preprocessed generation, took around 34 minutes to complete. 

 

  
 

Fig. 4 & 5. Prediction Results of Phase Predictions (Left) and Magnitude Predictions (Right) 

 

In terms of phase classification, the program averaged an 85-90% total accuracy rate throughout 

all the runs of the phase model. Figure 4 showcases the phase scores in terms of probability for a sample of 

200 waveforms, with P-wave probability in blue and the S-wave probability in orange. The red dots 

showcase where the program predicted wrong, with 31 predictions incorrect within this 200-waveform 

sample. 

In terms of magnitude classification, the program was able to achieve around a 0.002 loss rate when 

testing the general model’s prediction capabilities. Figure 5 shows the magnitude results when scaled back 

to their true forms. When scaling up both the test magnitudes and the predicted magnitudes, the model was 

on average about 0.4 magnitudes off from the true number, and the regression line itself was very close to 

the optimal line in orange, showing that the predictions did align to the magnitudes. However, the 

coefficient of determination metric, or R2, was around a low 0.15 meaning that the results were still very 

spread out from where it could be.  



 
Fig. 6 & 7. Loss Evolutions of Generator and Discriminator for Raw GAN (Left) and Preprocessed GAN 

(Right) 

 

For waveform predictions, we found that 150 epochs of training gave the GAN model plenty of 

time to learn on the provided waveform data. It took almost 25 minutes for the raw GAN model to train 

itself, while it took 9 minutes for the Preprocessed GAN model to train itself. This difference can be 

attributed to needing to train 5000 waveforms instead of 2000 waveforms, and the preprocessed data using 

only 50 seconds of each sample rather than using the full 60 seconds.  

Figures 6 and 7 show the loss scores of the GAN for both raw and preprocessed data, respectively. 

For the raw data, the generator had a quiet runtime and only started improving once the discriminator was 

accurately differentiating waveforms.  For the generated data, the two halves of the GAN model were in a 

constant fight with each other. Both outcomes resulted in waveforms that looked accurate to the most 

common waveforms, shown in Appendix A. 

3.4 System Advantages & Limitations 

We believe the system has several possible advantages. First and foremost, our solution will allow 

more advanced warning of an earthquake, enabling the necessary measures to be taken before the 

destructive forces can reach the site of impact. This can save the lives of residents, prevent unnecessary 

damage to various infrastructures, and enable a sense of safety and security that can allow communities to 

prosper. The next save we foresee is in manpower, as having artificial intelligence to handle predictions 

can allow a significant reduction in the resources needed for earthquake detection (mainly the setup of 

infrastructure) and emergency response. The last advantage is that the system largely uses components that 

are already well-established products in their own right. The majority of the work will not be the creation 

of the system, but leveraging components together in an integrated manner.  

However, any solution that involves adding complexity will always have limitations. At the 

communication level, there is the worry of hackers that may attempt to take down the system or hold it for 

ransom, such as in the case of the Colonial Pipeline back in 2021 [42]. Another problem that can hamper 

communications is the environment itself. The terrain of the area where seismic activity is detected must 

allow for a clear line of sight between the sensor and the satellite, meaning heavy weather conditions can 

interrupt communications with drones and satellites alike. The analysis would have to fall back to ground 

communications with their local station. At the data processing level, the use of machine learning will 

require extra computational power and hardware modules, such as GPUs and TPUs made for conducting 

highly intensive computation, so an evaluation of current computer hardware will be done to see if they are 

suitable to handle running the models. Lastly, while most of the system itself just needs to be combined, 



there are no consumer-ready solutions available with geophones integrated into the drone, meaning some 

development will have to be focused on the design.  

4 Deployment and Integration 

4.1 Deployment Timeline 

 
Fig. 8. Pivot Chart showcasing year-by-year costs of the development period, in addition to annual costs 

of maintaining the system. 

 

The Deployment Timeline is split into four major phases of development and integration into 

current national earthquake detection systems. The phases are split up by years, where the cost for each 

year is displayed in Figure 8. How each cost was derived is shown in the cost explanation (sec. 5).  

The first phase is called the Testing Phase, where the majority of work will be in raising the 

technology readiness level to TRL level 7. This will involve refining the speed, capacity, and performance 

of the solution itself, selecting hardware for data collection and satellite communication, ensuring proper 

cybersecurity measures work without inhibiting the performance of the solution, ensuring the geophone-

mounted drones are able to send back seismic data without needing to physically return, and initializing the 

communications between all involved parties of the larger system. This phase should last from 2025-2026. 

The second phase is called the Integration Phase, where the majority of the work will be ensuring 

organizational partners and all participating parties in the system have finalized roles. We expect the 

categories of interacting entities to be NASA as the provider of aerial and satellite communications, USGS 

as the owner of the national earthquake detection system, the alert providers that USGS works with to get 

seismic information out to consumers, the emergency response services that work based on alert 

information, the US citizens that we assume will either have the app or be in proximity to alerts, and the 

providers of hardware, such as satellite dishes, possibly new seismographs, drones, and various software 

solutions that will be needed. We expect the finalizing of this system to take longer, and thus give it a longer 

time range of 2026-2028. 

The third phase is called the Validation Phase, where the majority of the work will be in raising the 

technology readiness level to TRL level 8, or “flight testing” the solution in an actual ShakeAlert 

environment. In this phase, a station would be used as a test station where the improved solution will run 

adjacent to the current system, along with all additional system components. This will allow us to create 

performance metrics and use experimental data from a real environment to compare the effectiveness of 

both solutions. Mainly, we will be seeking to ensure that our predictions will be able to report oncoming 

earthquakes faster than ShakeAlert can report a detection. We expect that the setup, testing, and possible 

tweaks resulting from testing should take from 2028-2030. 

The last phase is the Deployment Phase, where resources will shift towards implementing a 

successful prediction system as the new national standard for earthquake monitoring. This will meaning 

outifitng each station with the necessary components and resources to do its own unique monitoring, while 



feeding into a central system that can aggregate results responsibly. This will start in 2030 and continue 

indefinitely as the system as a whole is improved and maintained. 

4.2 Operational Integration 

During the development phases, there will be overall objectives that we hope to achieve. The first 

main objective is for all parties of interest to be aware of the final “flight-ready” system and their roles in 

it by 2028. The second main objective is for specific hardware of the final “flight-ready” system by 2028. 

We shall achieve this through the themes of each phase. The testing phase will be where conversations shall 

begin for which organizations and potential companies should be in consideration for collaboration. The 

integration phase will be where this wide net shall be narrowed down only to companies that show interest 

in working on the development. The validation phase shall further narrow down only to the companies 

chosen to work within the system and should clarify all roles that each entity, including the end people, 

should have. 

In the current proposal, the actors of interest are US National Aeronautics and Space 

Administration, United States Geological Survey, Federal/state/local disaster response entities and 

ShakeAlert partners (e.g., California Office of Emergency Services, US Federal Emergency Management 

Agency), Aerospace Data Providers (e.g., Maxar, Airbus), Satellite Communication Providers (SpaceX, 

BlackSky), and US Citizens that will be served by this effort. 

 The data provider shall provide real-time TEC perturbation information that should feed into 

USGS’s ShakeAlert seismograph data. This data will be simultaneously analyzed by a seismic station. This 

station will be connected to a satellite network that can take in data from any seismograph and drone 

geophone. This data is both statically analyzed and fed into the machine learning model. The model’s 

estimates will be used to forecast the magnitudes and possibly future magnitudes. If the anticipated 

magnitude is large enough and the model is certain of a serious earthquake, an alert will be sent through 

ShakeAlert’s network to notify everyone of a highly likely seismic event.  

4.3 Cost and Justification 

Between the years of 2025-2030, we estimate the cost of our system to be around 98 million dollars, 

with every year after that being an additional 61 million in yearly costs. Our measurements assume that 

everything but the buildings of the stations is completely new and that dedicated contracts will be used for 

both TEC data and other atmospheric measurements and the satellite communication system, so this number 

will be lower than actually needed.  

While this is a steep cost, we believe the anticipated cost from this system can be offset just by 

preventing the anticipated cost of earthquakes should we not move forward with the solution. A paper 

published in 2022 researched the numerous methods used to determine the cost of a human life. One of 

these methods, the value of statistical life (VSL), measured monetary value based on payouts, lost 

productivity, and other market factors. Papers that used the VSL method to determine the cost of a US 

person’s life settled between 5 million and 15 million [21, 23]. On the low end, just losing 20-30 lives to 

an earthquake could result in as much potential value lost as the entire development phase of this solution.  

Earthquake predictions can allow those same people to steel themselves, find cover, or even 

evacuate to open land should they be able to. This will increase the chance of someone surviving a disaster, 

or even avoiding much of the danger altogether. It will also decrease the pressure on disaster response 

teams, as-  

● A more mentally prepared populous is easier to locate and direct towards shelters and emergency 

health care locations. 

● More people in safe locations make the task of digging through rubble or hazardous areas less 

difficult.  

● Recovery can be faster and efficient with more volunteers, and damaged places can return to 

normalcy quicker. 

● Less people are injured throughout the seismic event. 



-all of which decreases the money, effort, and workforce that must be expended during the aftermath of a 

seismic event.  

 

An extra benefit should predictions get good enough that earthquakes can be anticipated far in 

advance is that homeowners and building owners can take strides to prepare their locations to be hit, 

resulting in less infrastructural damage. There is data to show that mitigation efforts, even with the small 

seconds before an earthquake hits, are as valuable as at least 10 times the amount of resources spent in the 

aftermath [26]. With a 2023 FEMA report showing 14.7 billion dollars lost annually in building damages 

attributed to earthquakes, any edge that can be taken to protect the infrastructure we use in our everyday 

lives should be taken [41]. 

5 Cost Explanation 

The following costs are idealistic estimates assuming we are making modifications in support of the current 

infrastructure, we aren’t adding or removing more stations, and we are not reusing equipment to save costs. 

This was to create a budget that accounts for all possible expenditures that directly affect our system.   

 

Seismograph-Satellite Installations 

Currently, there are 74 USGS stations that ShakeAlert leverages for data[16]. Through research with 

numerous vendors we found that high-end three-dimensional seismograph sensors fall between $1000-5000 

[14, 15]. Commercial satellite communication providers such as Starlink charge around $500 to install 

physical satellites at a given location so that that location can access their network. [18, 19]  Assuming we 

obtain the average high-end seismograph for $3000, along with a $500 dollar satellite installation to enable 

seismographs to communicate to a remote station, for each one of the 74 stations, yielding (3000 + 500) * 

74 = $259,000 to equipment each ShakeAlert station with the needed seismograph equipment. 

 

Labor costs for cybersecurity and software engineering/development 

The United States Bureau of Labor Statistics reports the following annual salaries as of May 2023: The 

average software development employee makes $113,000 per year, and the average cybersecurity employee 

makes $124,000 per year. [20] The salaries we are looking at are umbrella terms. In reality, different 

positions may be used. We will require a main team consisting of a variety of specializations to work on 

the ML component of the solution. Assuming this time consists of seven people: 113,000 * 7 = $761,000 

annually to pay salary for this team. We will require a main team of cybersecurity experts to ensure that the 

system at large is near invincible to possible attacks and vulnerabilities that can compromise its 

functionality. Assuming this team consists of seven people, it yields 124,000 * 7 = $868,000 annually to 

pay salary for this team. We may require satellite teams of developers and cybersecurity for each location, 

yielding  74 Locations * $113,000 per year * 3 software developers = $25,086,000 in development salary 

annually and 74 Locations * $124,000 per year * 2 cybersec personnel = $18,352,000 in cybersecurity 

salary annually. 

 

Application costs 

Application costs fall on a broad range, but large-scale apps that interact with a back-end source appear to 

cost at least $100,000. We assume this figure for the cost of investment into modifying end-user solutions 

that rely on ShakeAlert and spread it out across four years. 

 

Satellite TEC Data 

NASA’s Earth Science Division (ESD) holds several contracts pertaining to data products collected by 

satellites owned by various companies. Most similar to the type of data we need are Maxar and Airbus. 

NASA’s deal with Maxar’s sat-constellation for $3,735,948 (or $933,785 per year) from 2018-2022 allows 

them access to “Collect Clouds, Aerosols, Vapor, Ice and Snow (CAVIS) imagery from WorldView-3 and 

WorldView-4 satellites.” NASA’s deal with Airbus’s sat-constellation for $1,349,142 from 2021-2022 



allows them access to “Earth-relevant data products obtained for scientific evaluation, including SAR 

satellite data products from TerraSAR-X, TanDEM-X, and PAZ constellations.” We took the average of 

all ESD contracts listed and came to an assumption of $4,706,551 annually to pay a data product including 

round-the-clock TEC perturbation monitoring data.  

 

Satellite Communications 

The Defense Information Systems Agency, or DISA, published a 2023 report of a 900 Million dollar 

contract (originally) split between 16 companies for the purpose of “Proliferated Low Earth Orbit (PLEO) 

Satellite-Based Services” for 5 years (2023-2028).  900 Million / 16 companies / 5 years = $11,250,000 

annually on average per company. We use 11.25 million as the assumed annual cost of a Sat Com contract. 

 

Drones and Geophones 

A quadcopter autopilot drone fit for analyzing seismic activity in remote locations would cost $3,000 or 

more. Triaxial Geophones go for around $140-200. A drone with four geophones mounted for ground 

spiking yields 3000 + (200 * 4) = $3,800 per seismic autonomous drone. A test fleet of 100 seismic drones 

(cost: 3800 * 100 = $380,000). One fleet for each location, cost: 380,000 * 74 = $28,120,000 for all 74 

stations. 

 

6 Summary 

We have presented an innovative solution for an improved earthquake prediction and alert system 

that utilizes contemporary strides in machine learning, aerial-based real-time earthquake monitoring, and 

satellite communication to improve efforts to inform citizens of incoming seismic events. We demonstrated 

that our main contribution to the system - a machine learning-based approach that predicts both the phase 

and magnitude of a wave - was able to complete a full run-through and predict the magnitude of an 

earthquake based on the waveform, with being half a magnitude off from the true value on average. Our 

financial analysis and justification showcased the disparity between the comparably small investments into 

the system, and the opportunity of saving and creating millions, if not billions of dollars in preventing 

deaths, further tailoring infrastructure, and creating an environment where disaster recovery efforts do not 

need to be as large. We believe that with full backing, we can usher in the next era of earthquake alerting, 

and create a world where earthquakes are yet another natural disaster that can long be anticipated and 

prepared for.  

 

  



Appendix A - Waveform Examples 

 
Fig. 9. Raw Waveform Samples fed into the Generative Adversarial Network 

 

 

 
Fig. 10. Preprocessed Waveform Samples fed into the Generative Adversarial Network 

 

 

 



 

 
Fig. 11. Raw Waveform Prediction created after 150 training cycles. 

 

 
Fig. 12. Preprocessed Waveform Prediction created after 150 training cycles. 
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